Mars Ascent Vehicle

Hybrid Propulsion Technology Development for a Potential Near-Term Mars Ascent Vehicle

Ashley Karp, Barry Nakazono, George Story, Jessica Chaffin, & Greg Zilliac

7 March 2019

Pre-Desicional

Mars Ascent Vehicle Study

Agenda

- Introduction
- Potential Hybrid Design
- Propellant Combination
- Full Scale Testing
- Hypergolic Ignition
- Liquid Injection Thrust Vector Control
- FY 19 Plan
- Summary

*Concepts under study

Potential Mars Sample Return

- A potential MSR campaign is being studied jointly by NASA and ESA for launch as early as 2026.
 - Technology development for a hybrid propulsion system
 - Vehicle level system studies of hybrid and solid propulsion options
- Sample Retrieval Lander
 - Studying a Propulsive Platform Lander and Skycrane Delivered Lander
 - Imposes mass and geometric constraints on the MAV

Mars Ascent Vehicle Study

Potential Hybrid Design

- The main focus for the hybrid propulsion team has been technology development of the novel propellant combination. The design has matured along with this testing.
- Additionally, preliminary work on the Sample Retrieval Lander has started to drive mass and geometric constraints.
 - Mass: maximum of 400 kg GLOM for a payload of 12 kg.
 - Geometry: 2.8 m by 0.57 m

Propellant Combination: Fuel

- SP7 is wax-based (higher melt temperature/viscosity than paraffin)
- Residual stresses
 - SP7 shrinks 15-20% in the liquid to solid phase transition
 - The wax cools from the outside inward, leaving residual stresses within the segment.
 - Grain Manufacture Process:
 - Cooling at ambient conditions lead to cracking
 - Controlled cooling rates (oven cooled) successful, but sensitive to minor changes
 - Annealing helped substantially for ambient cooled grains, under investigation for oven cooled.
 - Southern Research is carrying out material testing on SP7 to obtain material properties for modeling

Propellant Combination: Oxidizer

- Mixed Oxides of Nitrogen (MON) is a common space storable oxidizer, but has not been used for a hybrid motor in the past.
 - Most existing propulsion systems use MON-0.5 to MON-25
 - Previous hybrid MAV concepts used MON-30 because of its low freezing point, <-80C.
 - The curve relating freezing temperature to the amount of NO in the mixture is very steep, with a difference of about 25 C between MON-25 and MON-30.
 - The current mission design indicates that the MAV and oxidizer could be kept above -40
 C (the updated mission timeline does not require the MAV to be on Mars in winter)
 - A move to MON-25 was made in 2018 based on the new mission timeline and the availability of the oxidizer.

Full Scale Testing

- Two vendors have completed hybrid motor testing at full scale
 - Goals:
 - Mission-like burns: almost full mission duration test including a motor shutdown and restart without human intervention.
 - Performance: C* eff of 95% (achieved ~ 90%)
 - Concerns
 - Stability: using TEA/TEB to vaporize MON
 - Nozzle erosion
 - Testing with MON-3 (less expensive, easier to acquire and similar vapor pressures at atmospheric conditions to MON-25 at -20 C)

Space Propulsion Group, of Butte, MT

Whittinghill Aerospace, of Camarillo, CA

Mars Ascent Vehicle Study

Hypergolic Ignition

- Previous studies suggested that hypergolic ignition would be the lightest mass option for MAV
- Two methods of hypergolic ignition are currently being considered.
 - Liquid: Hypergolic liquid with the MON oxidizer
 - At the time of the paper, Triethyl Aluminum and Triethyl Borane (TEA/TEB) was being considered.
 - Commonly used (with oxygen) in rocket applications
 - Purdue completed a drop test with N₂O₄ that indicated it is hypergolic with TEA
 - Alternatives are now being pursued.
 - Solid: Solid materials are added to the hybrid fuel grain that are hypergolic with MON.

TEA/TEB

- TEA/TEB is currently being used with a small amount of GOx to ignite the motor and maintain stable combustion throughout the burn (vaporize the MON)
- Disadvantages:
 - The TEA/TEB system accounts for nearly 20% of the total component count in the feed system.
 - Safety considerations of carrying a hypergolic liquid
 - Performance at low temperatures may not be sufficient
 - Preliminary testing indicates that TEA/TEB is not hypergolic with MON

Mars Ascent Vehicle Study

Solid Hypergolic Additives

- Subscale hotfire testing (2 inch scale) at Purdue confirmed the performance of several solid hypergolic options using different amide formulations and MON.
- Solid hypergolic materials simplify the design by not requiring additional tanks/plumbing
- Unique processing steps were developed by Purdue to incorporate the material into SP7.
- The main disadvantage of this option is the additive's sensitivity to moisture, complicating handling of the otherwise inert motor.

2" motor test at Purdue

Liquid Injection Thrust Vector Control

- LITVC was initially selected because it was the lowest mass option and only small deflections (1-2°) were required.
- Design: Four pairs (90° around the nozzle)
 - One valve would provide sufficient flow for a $\pm 1^{\circ}$ deflection and both valves would provide $\pm 2^{\circ}$.
 - Currently modifying a light weight, fast acting valve for MON service.
- LITVC testing has been completed under Earth ambient pressure and temperatures.
 - Different X/L, but data will anchor modeling.
 - Testing this summer/fall will confirm vacuum performance.

LITVC Testing at Earth Ambient Pressure

FY19 and Future Work (1/2)

- The goal of this technology development program is to have demonstrated the major milestones required for a hybrid MAV design that closes under the current assumptions for Mars Sample Return by the end of summer 2019.
- The highlight of this effort will be testing of a thermal cycled, full-scale hybrid motor under relevant (low pressure and cold) conditions at White Sands.
 - Up to five additional hotfire tests are planned to prepare for the WSTF test.
 - Three tests focus on motor development for the wax-based fuel and MON-25 oxidizer and achieving performance and burn time goals. (Whittinghill)
 - Two tests with the goal of demonstrating a light weight motor case under relevant thermal conditions (SPG)
 - Multiple subscale tests will determine the regression rate of a slightly modified SP7 with the goal of achieving an approximately 15% reduction.

FY19 and Future Work (2/2)

- Purdue will test hypergolic ignition of SP7 with solid additives and MON-25 under low pressure conditions this year.
 - Full-scale testing will continue to use a liquid hypergol for ignition this year
 - The potential for adding solid additive to a hybrid MAV will be evaluated and a decision should be made by the end of 2019.
- A qualification program for a hybrid motor will continue to be refined.
- MSFC will be leading a study to design complete concepts for both a hybrid and solid MAV vehicle
 - This study will work closely with the MSR and SRL studies being led by JPL to make sure the MAV concepts fit within the higher level architectural constraints.

Mars Ascent Vehicle Study

Summary

- A technology development program is underway to determine feasibility of the hybrid option for a potential Mars Ascent Vehicle as part of a potential robotic Mars Sample Return Campaign.
- Substantial strides have been taken in the propulsion system development.
 - Full scale hotfire testing has been completed at two vendors and the development is ongoing with both vendors joining their efforts.
 - Hypergolic ignition has been researched and demonstrated using solid additives and liquid options are being considered.
- The potential design is continually updated based on the developments of the development program.
- The goal is to present a design that closes by the end of summer 2019.

National Aeronautics and Space Administration Jet Propulsion Laboratory / Marshall Space Flight Center

NASA

Mars Ascent Vehicle Study

Questions?

